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Abstract

People can usually give reasons for recognizing a par-
ticular object as a specific category, using various means
such as body language (by pointing out) and natural lan-
guage (by telling). This inspires us to develop a recog-
nition model with such principles to explain the recogni-
tion process to enhance human trust. We propose Semantic
Prototype Analysis Network (SPANet), an interpretable ob-
Jject recognition approach that enables models to explicate
the decision process more lucidly and comprehensibly to
humans by “pointing out where to focus” and “telling about
why it is” simultaneously. With the proposed method, some
part prototypes with semantic concepts will be provided to
elaborate on the classification together with a group of vi-
sualized samples to achieve both part-wise and semantic in-
terpretability. The results of extensive experiments demon-
strate that SPANet is able to recognize objects almost as
well as the non-interpretable models, at the same time gen-
erating intelligible explanations for its decision process.

1. Introduction

With the rapid increase in performance of neural net-
works, recognition models have been widely applied in
various fields. In recent years, an increasing number of
researchers have concentrated their efforts on explainable
Al (XAI), in order to deploy Al models towards real ap-
plication scenarios with high-reliability requirements, such
as autonomous driving, healthcare, transportation, security
and other fields. Besides, previous work [|1] states that
when using recognition models, humans prefer a model
with explanations over the non-interpretable one, because
the provided explanations indeed help humans determine
when to trust the Al systems and solve problems better.

Various methods have been proposed to significantly im-
prove the interpretability of recognition models by generat-
ing diverse forms of explanation. Previous user study [11]
shows that among the existing XAI approaches (explana-

pointed ear

K.\Because it has pointed ears
he;e, curly whiskers, fluffy
paws, and here, a bushy tail.
These usuall,b appear on a cat.

Q: Why do you
think this is a cat?

bushy tail

fluffy paws

Figure 1. Example of the explanation provided by humans to rec-
ognize an object, in which “pointing out” (in green) and “telling”
(in blue) are often used. Best in color viewing.

tions presented in heatmaps, examples, concepts and pro-
totypes), concepts and prototypes are preferred by human
users than other explanation forms. Concept-based expla-
nations use class-agnostic, text-based concepts to decon-
struct the categories. Prototype-based explanations explain
the model with visualized samples, and usually focus on the
local area of images. Concepts and prototypes are the most
intuitive views that humans use to explain their reasoning
and recognition [11].

Consider what humans usually do when asked to explain
arecognition process. As shown in Fig.1, when asked “Why
do you think this is a cat?”, we usually explain by pointing
out where to focus and telling about why it is, such as “Be-
cause this part is a pointed ear, and that part is a pair of
Sfluffy paws. These features usually appear on a cat.” The
explanation not only involves highlighting regions of typ-
ical patterns, which are called part prototypes, but also
provides some text descriptions, which are called seman-
tic concepts. These two forms of explanation are related to
XAT’s part-wise and semantic interpretability respectively,
and previous works always concentrate on one of them. The
natural combination of these two forms of explanation in
human communication inspires us to design an interpretable
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model that takes both into account.

In this paper, an interpretable object recognition method,
Semantic Prototype Analysis Network (SPANet), is pro-
posed to recognize by semantic prototypes, which com-
bine the part prototypes and semantic concepts to generate
comprehensive explanations. As Fig.2 shows, with SPANet,
local features of the input image are extracted and com-
pared with the learned part prototypes to achieve recogni-
tion based on similarity. The learned part prototypes are
labeled with semantic tags by a fine-tuned vision-language
model for semantic reasoning similar to that in the human
recognition, and are visualized by a retrieval-based recon-
struction method to enhance the intrepretability.

semantic prototype = part prototype + semantic concept

. prototype 1 prototype 2\\ prototype 3
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, '
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Figure 2. SPANet uses semantic prototypes to recognize an object
to achieve both (prototype-based) part-wise and (concept-based)
semantic interpretability.

Due to the significant differences when constructing two
forms of explanations, there have been very few prior works
that have successfully integrated both ideas and techniques.
As far as we know, almost all of the current interpretable
recognition methods only focus on one of these two as-
pects, either on part-wise interpretability or semantic in-
terpretability, and SPANet represents an early endeavor to
achieve these two forms at the same time. The case stud-
ies on bird species identification and car model recogni-
tion are conducted, and the quantitative results demonstrate
that SPANet outperforms the compared interpretable recog-
nition methods, and achieve comparetable results with the
non-interpretable models. What’s more, qualitative analy-
ses verify that SPANet can effectively model the semantic
concepts, and align them to the learned part prototypes. Our
method shows protential influences on generating compre-
hensive explanations in the interpretable methods to build
more reliable and practical recognition models.

2. Related Work

Post-hoc and self-explainable interpretability. Ac-
cording to the purpose of interpretable methods, they can
be grouped into two types typically [16,27]. The purpose

of post-hoc interpretability [16,27] is to analyze an exist-
ing model, which is usually able to be utilized on any DNN
models and shows how they work. These works can be fur-
ther divided into several categories, such as methods by at-

tribution (gradient or relevance propagation) [2, 28, 34,4 1],
by perturbation (occlusion or counterfactual case genera-
tion) [7,23], by example inversion or generation [14,29,39],

and so on. In contrast, self-explainable models [27], or
transparent models [16], are designed for intrinsic inter-
pretability, which means that they can output the task results
and the corresponding explanations simultaneously, includ-
ing some prototype-based [3, 17,18,25,26,35] and concept-
based [12, 19,40, 42] methods. Almost all of the current
self-explainable methods only focus on one of the explana-
tion forms, while SPANet achieves part-wise interpretabil-
ity based on prototypes and semantic interpretability based
on concepts at the same time.

Prototype-based object recognition. In the recogni-
tion process of prototype-based methods, the distances be-
tween the image features and the learned prototypes of the
categories (or concepts) are used. Prototype-based meth-
ods are traditionally used in the field of few-shot learn-
ing [30,32]. The summarization ability of prototypes for
categories makes them particularly suitable for scenarios
that require efficient use of support sets. Recently, there
are also many works using prototypes for interpretable ob-
ject recognition, in which a prototype usually represents a
region (or a patch) in an image. ProtoPNet [3] is proposed
to find prototypical parts for each class and classify objects
by combining evidence from prototypes. ProtoTree [I8]
conducts prototype learning with decision trees, and explain
the recognition process by tracing the path through the tree.
TesNet [35] constructs a transparent embedding space on
Grassmann Manifold to replace the L2-distance in ProtoP-
Net. The proposed SPANet relies on semantic prototypical
parts to recognize objects. In order to attach semantic to
each learned part prototype, the local features are extracted
from a vision-language model with multi-modal alignment,
instead of a vanilla CNN used in previous works.

Concept learning. Concept learning is a fundamental
process in cognitive science, which refers to learning at-
tributes to distinguish exemplars from others among vari-
ous categories [1]. In XAI, concept learning is generally
used in both post-hoc interpretability and self-explainable
models to generate meaningful, easy-to-understand expla-
nations. For post-hoc interpretability, TCAV [10] learns
meaningful concepts from the probe datasets to analyze an
existing recognition model. Yeh et al. [38] investigate the
completeness of a concept set and propose a new concept
discovery method, as well as a metric (ConceptSHAP) to
evaluate the importance of learned concepts. To design self-
explainable models, Concept Bottleneck Models [12] learns
human interpretable concepts by a bottleneck layer before
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the last fully connected layer. CSG [15] trains a Class-
Specific Gate layer to sparse the connections between con-
cepts and categories. Zarlenga et al. [5] propose Concept
Embedding Models to improve the accuracy of concept bot-
tleneck models. In these works, concepts are always learned
on the entire image, while SPANet tries to align the con-
cepts with local regions so as to attach semantic labels on
the learned part prototypes.

3. Method

In this section, we will introduce the proposed inter-
pretable object recognition model. In Sec.3.1, the problem
definition and some notations will be introduced first, and
then the framework of the method will be presented. After
that the specific designing details of each module will be
shown in Sec.3.2, 3.3, and 3.4 respectively.

3.1. SPANet’s framework

In a vanilla single-label object recognition task, a class
label g; is required to predict accroding to the input image
x;. Suppose that X represents all the image samples in the
dataset, and n = |X]| is the size of the dateset. X(9 C X
refers to all the image samples of the certain category c.
x; € X is one of the samples in the category ¢, whose
class label y; equals to c. Suppose that C' = {c} represents
all the categories to be recognized.

In SPANet, there are three main functional modules: Se-
mantic Attachment Module, Prototype Recognition Module,
and Reconstruction Module. Semantic Attachment Module
is able to encode images and texts to a common embedding
space (semantic space), which has been implemented by
many previous works such as CLIP [21]. Prototype Recog-
nition Module is designed to assign one class label by com-
paring the image feature encoded in the Semantic Attach-
ment Module with the stored part prototypes, and the se-
mantic label of the nearest part prototype is provided simul-
taneously, which is used to generate the final explanation of
the classification process. Reconstruction Module is not a
part of the classification workflow, but is very important to
the model interpretability, which can restore the semantic
prototypes into the visual space to enable human-friendly
explanations.

As Fig.3 shows, in the training stage a training pair (z, y)
with corresponding semantic descriptions (such as class-
level attributes or captions) is provided. Then the semantic
descriptions are preprocessed to the input text , which will
be encoded to the text feature zp = fr (), with the input
image x encoded to the global feature z; = f7 () and the
local feature z;, = f1, (x) by Semantic Attachment Module.
The image features zy, can be used to train the following
Prototype Recognition Module to generate the class label,
which will be introduced in Sec.3.2, and all of them are
used to learn the relation between the part-wise features and

the specific semantic description, which will be introduced
in Sec.3.3. Finally, a reconstruction method is proposed to
reconstruct the part-wise feature to the corresponding im-
age patch, in order to generate a visualized explanation in
Sec.3.4.

3.2. Recognition by part prototype

In this section, the structure of SPANet’s main branch,
the recogniton module, will be elaborated. We use the
most common framework of case-based and part-based in-
terpretable object recognition method [3] as our baseline.

Given an input image z, the feature map z;, € Rhxwxd
is extracted by a local feature encoder f7,, such as a CNN or
a Vision Transformer, in which h and w refer to the height
and the width of the feature map, and d refers to the number
of output channels. Each feature vector 3(*/) € R? from the
feature map zr,’s position (4, j) can be traced back to a re-
gion (or a patch) on the input image, which can be regarded
as the local feature of the region:

- (haw)
2 = {ahu)}

i _ fL(x) c Rthzxd (1)

For the semantic tags on the part prototypes in SPANet,
in the semantic attachment step (see Sec.3.3), a vision-
language pretrained model is used in the backbone instead
of a visual feature extractor. The choice of vision-language
models can be diverse, and in the following sections we will
take CLIP [21] as an example. In CLIP, a global feature
vector is obtained by its image encoder; however, a feature
map is required in the part-based recognition. It is crucial to
get local features with spatial information embedded while
not losing the alignment to the text embeddings. We design
some schemes for each backbone to modify the top layers
of CLIP to obtain the required local features. More details
are provided in the supplementary material.

SPANet learns m prototypes P = {p},-,, and a pro-
totype layer g is used to calculate the similarity between
every feature vector 3(*7) on the feature map z;, and each
prototype pi. The prototype layer g gets a full size similar-
ity map firstly, and then applys the max pooling along the
spatial dimension (to get the “most similar score” to each
prototype):

g(z;P) = Hllaxsim (21, P) = max sim (5(i,j)7p)
oc

(4.3)
2
For implementation, g(zy) calculates the L2 distance,
and uses a monotonically decreasing transformation to
transfer the distance to the similarity score g (z1,; P) € R™:

1399 — prll3 +1
g (z1; P), = maxlog ————
(21:P), = 1pas 1359 — pil3 + €

3)

SPANet allocates m,. prototypes for each category c. We
mark the allocation as P(¢) C P, so that [P(9)| = m,.
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Figure 3. The framework of the proposed SPANet. The input image is encoded to a feature map by an image encoder, and the similarities
between part-wise features in the feature map and the learned semantic prototypes are calculated to make final predictions (Prototype
Recognition Module). The semantic prototypes are interpreted by both semantic tags and patch visualization, in which semantic tags are
labeled by the fine-tuned vision-language model [2 1] (Semantic Attachment Module, the red dashed line), and the patch visualization of
the prototypes comes from a retrieval-based, parameter-free reconstruction method (Reconstruction Module, the blue dashed line).

Then the input samples can be finally classified into a cer-
tain category by identifying which prototype its g (z1,) has
the highest similarity score with, and which category this
most similar prototype belongs to. This function is imple-
mented by an FC layer i (without a bias), and the output
of this layer (after a softmax layer) can be regarded as the
probability distribution over the categories to be classified:

h(g(zr); W) =Wy -g(z1) € RIC 4

To optimize g and h, we follow the most loss functions in
ProtoPNet [3], including a cross entropy loss (L) to con-
strain the final classification results, a cluster loss (L.s¢)
to minimize the distance between the nearest (local feature
3(9) | part prototype pj, from the positive class) pair, and a
separation loss (L) to maximize the distance between the
nearest (local feature 3(*7), part prototype p;, from the nega-
tive classes) pair. Across the training set X = {(z7, 1)},
the losses can be calculated as:

1 n
Lce:ﬁZCE(hogOfL(xz),yl) o)
1= 1
»Ccs = - - 5 6
3,y O
Loop = —— min min wi) _ 5 7
. ZW% min |5 ~pil} @)

Besides, we find that there should be an L2 penalization
on the part prototypes P to prevent overfitting:

Lro= > llpxl3 ®)
prEP
Finally, several losses are weighted and summed to ob-
tain our final optimization objective of the prototype recog-
nition module:

»Cpt = »Cce + )\clstﬁclst + )\sep»csep + )\LZ»CLZ (9)
3.3. Semantic attachment

It is important to attach semantic meanings on the
learned part prototypes, or these part prototypes are pre-
sented in numerical vector form and extremely unintelligi-
ble to humans. We use the Semantic Attachment Module
to “label” the part prototypes with semantic labels, which
we refer to as the process of semantic attachment. Just like
in the previous section, we will take a vanilla CLIP [21] as
an example of a vision-language model, and then fine-tune
it to adapt to our data domain. Due to the modifications
made to CLIP’s visual backbone (referring to Sec.3.2), it
can directly obtain the local features of images without any
extra parameters, which means it does not require any train-
ing or fine-tuning process if the parameters in the backbone
are frozen. These obtained local features can be directly
matched with the semantic text features.
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However, as the algorithm may be applied to highly
specialized domains, a pretrained vision-language model
may be ill-suited for real, fine-grained application scenario.
Hence, if additional semantic data are available, prelimi-
nary adjustments can be implemented to adapt the model to
the target domain, which we term as semantic fine-tuning.
Various strategies of fine-tuning can be performed depend-
ing on the type of additional data provided, such as global
fine-tuning and local fine-tuning.

Global fine-tuning for image-text pairs. If the image-
text pairs are provided (in the most cases when the vision-
language pretraining), the global fine-tuning can be con-
ducted. The goal of global fine-tuning is to enable CLIP
to achieve correspondence between images and descrip-
tive text in the specific data domain. The fine-tuning pro-
cess is identical to that of vanilla CLIP, but different data
are used. Across the training set with image-text pairs
X = {(x1,m)},—,, in a training batch B, the global fine-
tuning loss L4, can be represented as a single-label con-
trastive loss in Equation 10:

1 n
Eglb = _E l_zllOg

where

exp [Sc (ZI,la ZT,l) /T]
Z(wjﬂ‘j)EB €xXp [Sc (ZIul’ ZTJ) /T] 7
(10)

( ) 21 2T
Se(zp,27) = —— .
o l21ll2 - |27 ll2

Note that here we use the original global feature z; =
fr (z) in the pretrained model, instead of the local feature
zr, = fr (x) generally used in Sec.3.2. Besides, the text
embedding zr = fr (r) is used to align the visual feature
and text. s, is the cosine similarity function, which will also
be used in the following sections.

Local fine-tuning for image-concepts pairs. If the
image-concepts pairs are provided, the local fine-tuning can
be presented. Sometimes attributes are confused with con-
cepts, but attributes are actually just one type of concepts.
The definition of concept should be broader, including any
abstract class-agnostic semantic “building blocks” able to
deconstruct visual categories. Here the form of concepts la-
beled on the image can be a list of text tags. The purpose of
local fine-tuning is to enable CLIP to align specific concepts
with local features extracted from the input image.

We use A = {ay} to represent the set of all the con-
cepts defined in the datasets, and use AW c Ato repre-
sent the set of concepts labeled on the sample z;, which
means that a training set consisting of image-concepts pairs
can be represented as X = {(ml, A(l)) };:1 All the con-
cepts are labeled on the entire image, and no extra local key-
points or bboxes are used. Just like what we do in Sec.3.2,
the similarities between every feature vector 51(1’3 ) and each
concept embedding fr (ax) are calculated, and then max-
pooled across the spatial locations:

g (z1;A) = e s (zL, fr (A))

= s (39, fr (an)) € RIAT )
v
where ¢’ (z1; A) indicates the similarity between the high-
est activated vector in the feature map z;, and the text em-
bedding fr (ay) of each concept ay. Then when the posi-
tive concept set A() for the image z; is given, we can re-
gard the concept prediction as a multi-label classification
task, that is fitting A with the output ¢’ (z1.; A).
Considering that CLIP is pretrained by contrastive learn-
ing, we also use a multi-label contrastive loss [8] L;,. to op-
timize the objective of multi-label concept prediction. L;,.
are defined in Equation 12, in which the most-activated fea-
ture vector is pulling closer to the embedding of positive
concept a; € A® | and pushing away from the embedding
of negative concept aj, € A\AD:

e~ 1
‘Coc:_* TA
S 2 TAT

exp [g’ (zL.1; A)j/T}
Y arearam exp ¢ (2015 A), /7]
(12)

Z log

a; cA)

where ¢’ (21,15 A)j means the j-th value in the ¢’ (21, ;; A),
namely the similarity between the nearest local feature and
the embedding of the concept a;. As Fig.4 shows, the multi-
label contrastive loss can also be visually interpreted as that,
the concept embeddings are “solid anchors” in the feature
space, and multi-label input samples are pulled closely or
pushed away to the anchors depending on their ground truth
label.

3.4. Semantic prototype reconstruction

To achieve visual part-wise interpretation, restoring se-
mantic prototypes from the “invisible” feature space to the
“visible” image space is necessary. This process is referred
to as semantic prototype reconstruction. Many different
reconstruction or generative technologies can be applied,
such as reconstruction methods used in segmentation tasks
(U-Net [24]), variational vutoencoders (VQ-VAE [31]), or
generative adversarial networks [6]. These reconstruction
algorithms play similar roles in SPANet. However, during
the exploration, we find that both generation-based methods
and reconstruction-based methods each have their own set
of issues: due to the extreme locality of semantics in the part
prototype, generation-based methods either are with faith-
fulness but in poor rendering quality, or in good rendering
quality but fabricate non-existent details; reconstruction-
based methods are affected by input images and cannot
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completely restore the visual images from the semantic pro-
totypes only by their own representations. We believe that
these phenomena are due to current technological limita-
tions or the imperfect implementation; however, in order
to ensure the faithfulness of semantic prototype restoration,
we choose to fallback and adopt a retrieval method as our re-
construction module, that guarantees semantic faithfulness
at the expense of slight loss of restoration accuracy.
Assuming that semantic prototypes P are fully trained,
for each semantic prototype pi € P, a reconstruction image
patch Ij; will be retrieved from the training set X = {x;}:

I, = image_patch (z, (4, 7))
(21,1, ) = argming, ;) 5t = e} (13)

In Equation 13, image_patch (z, (4, 7)) is to obtain the
patch at position ¢ of row and j of column on the image x.

4. Case study

In this section, we firstly introduce how to prepare the
dataset in the case studies (Sec.4.1) and some implementa-
tion details (Sec.4.2). Then qualitive and quantitative results
on both recognition accuracy and interpretability are shown
with the corresponding analysis (Sec.4.3, 4.4). In the end,
ablation study is conducted to analyze different modules in
SPANet to demonstrate their effectiveness (Sec.4.5).

4.1. Data preparation

For bird species identification, Caltech-UCSD Birds-
200-2011 (CUB) [33] is what we used to evaluate SPANet,
which contains 5,994 training images and 5,794 test images
from 200 bird species. For car model identification, experi-
ments are conducted on Stanford Cars [13], which includes

8,144 training samples and 8,041 test samples of 196 car
models. As in previous works, we augment the training
samples by a factor of 40 using rotation, skew, shear, ran-
dom distortion, and random erasing.

As stated previously, since CUB and Stanford Cars
are designed for fine-grained recognition, fine-tuning the
vision-language model is essential. We conduct both global
fine-tuning and local fine-tuning on them, in which image-
text pairs and image-concepts pairs are required. The
image-text pairs on CUB can be obtained in labeled cap-
tions [22,36]. As concepts, following the settings in CBM
[12], 112 binary attributes are selected by majority voting,
that if more than 50% samples in a category share one at-
tribute, then the attribute is labeled positive to all samples in
this category. For Stanford Cars, both global captions and
category concepts are obtained from GPT-4 [20]. Similar to
the attributes in CompCars [37], 20 concepts related to body
shape, headlights, doors, etc., are automatically generated
for local fine-tuning. In the supplementary material, more
details, data examples, and extracted concepts are provided.

4.2. Implementation details

We conduct empirical experiments on different back-
bone models, including ResNet-50 and ResNet-101 [9] for
CNN backbones, and ViT-B/32 and ViT-B/16 [4] for trans-
former backbones. The pretrained weights are all from
CLIP [21]. A two-stage training strategy is used: In
the warm-up epoches, the parameters in the backbone are
frozen, and only the semantic prototypes are optimized.
Then in the joint-training epoches, all the parameters in
SPANet are free to be optimized, but the backbone and
the semantic prototypes have different learning rates. The
global fine-tuning loss L4, and local fine-tuning loss L;oc
are added into the final optimazation loss with the respective
weight Ag;p, = 0.1 and A\jo. = 0.1. More hyperparameters
are listed in the supplementary material.'

4.3. Recognition accuracy

The recognition results of SPANet with different CNN
and transformer architectures are shown in Table 1. We
compare SPANet with several representative methods from
different groups based on their interpretability, including
non-interpretable baselines (vanilla CNNs and transform-
ers), part-wise interpretable methods (ProtoPNet [3], etc.),
semantic interpretable methods (CBM [12], etc.).

When providing part-wise explanation and semantic ex-
planation simultaneously, SPANet limits the decline of per-
formance into an acceptable level compared with non-
interpretable baselines. Especially, due to the excellent
compatibility, SPANet can take into account different back-
bone architectures. It can take advantage of the perfor-
mance benefits of transformers to outperform that with

I'The code is available at https://github.com/WanQiyang/SPANet.
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Table 1. Recognition accuracy on CUB and Stanford Cars. Col-
umn “Interpret.” refers to the type of interpretability. “RN” is short
for ResNet, and “Inc.-v3” is short for Inception-v3.

Method Interpret. | Backbone | CUB  Cars
RN50 84.5 86.3*
Vanilla None RN101 83.5 91.2
CNN/VIT ViT-B/32 | 82.3* 89.5%
ViT-B/16 | 89.4  93.7
RN34 79.2 86.1
ProtoPNet [3] Part-wise RN50 79.4%  87.9%
RN101 77.3*%  87.6*%
ProtoPShare [26] | Part-wise RN34 74.7 86.4
TesNet [35] Part-wise RN34 82.8 90.9
ProtoPool [25] Part-wise RN34 80.3 89.3
ProtoPool [25] Part-wise RN50 85.5 88.9
ProtoTree [18] Part-wise RNS50 82.2 86.6
PIP-Net [17] Part-wise RN50 82.0 86.5
. Inc.-v3 80.1 -
CBM [12] Semantic RNIS 62.9 i
PCBM [40] Semantic RN18 58.8 -
LFCBM [19] Semantic RN18 74.3 -
RNS50 81.7 88.9
SPANet Both RN101 77.7 85.6
(Ours) ViT-B/32 | 83.0 90.3
ViT-B/16 | 87.2  93.7

* indicates results reproduced based on official codes.

CNN backbones. We believe that the form of image patch
used in Vision Transformer [4] is more suitable as part pro-
totypes than traditional CNN, which is the key to achieving
better performance.

For qualitative analysis, as shown in Fig.5, SPANet is
able to generate the comprehensible explanations in part
prototypes with their semantic labels. Some visualization
of the semantic prototypes is shown in Fig.6.

4.4. Evaluation of interpretability

To evaluate the interpretability of the methods, we con-
duct a user study among ProtoPNet [3], ProtoTree [ 18], and
SPANet. We invite 15 participants, ranging from ordinary
users to experts, to complete the user study. In the experi-
ments, about 17% test samples are randomly selected from
CUB to be recognized, and corresponding explanations are
generated by these methods. The participants are asked to
click the explanation that they think most convincing (in-
cluding a “None” option to represent “none of them are sat-
isfying”). The screenshot of the user interface is shown in
the supplementary material. The answers are collected and
summarized as shown in Table 2.

The user study is conducted in two settings, in which

Table 2. Interpretability evaluation on a subset of CUB. A higher
value indicates higher satisfaction, with each row’s total sum being
1. “sem.” is short for semantic interpretability, which means the
semantic labels generated by SPANet for part prototypes.

‘ ProtoPNet ProtoTree SPANet None
w/o sem. 0.36 0.17 0.33 0.14
w/ sem. 0.37 0.13 0.43 0.07

Table 3. The results of ablation study on CUB. SPANet with
both global and local fine-tuning is able to bridge the gap between
global captions and concept texts, making more efficient use of se-
mantic information and achieving better performance.

Settings (ResNet-50) Accuracy
SPANet (frozen backbone) 53.9
SPANet (base w/o semantic intp.) 78.5
SPANet (w/ global fine-tuning) 79.7
SPANet (w/ local fine-tuning) 79.6

SPANet (w/ global & local fine-tuning) 81.7

different explanations are provided by SPANet. “w/o sem.”
means that no semantic labels are attached on part proto-
types, and “w/ sem.” means that sematic labels (such as
“color: black”) are provided. The results in Table 2 demon-
strate that interpretability of SPANet with semantic labels
is the most satisfying among these methods. Surprisingly,
ProtoTree [ 18] based on decision trees, which we believe to
be elegant and sophisticated, does not seem to be favored by
most of participants. Based on the results and the conversa-
tions with participants, we draw the following conclusions:

1. Semantic labels are helpful. A part prototype with
correct semantic labels is more convincing.

2. When the attached semantic labels are incorrect, even
partially incorrect, it will greatly reduce the trust of
the participants in the explanations.

3. Participants are more inclined to trust explanations
based on positive factors. The frequent use of “absent”
prototypes by ProtoTree [18] without any additional
semantic information may confuse the participants.

The second point is the main reason why SPANet only
marginally outperforms ProtoPNet, because prediction er-
rors sometimes occur when attaching the semantic labels.
For SPANet, simple concepts used in previous study such
as “color: black” are easier to predict, but the attachment
of complex concepts including part names (such as “tail
color: black™) may be inaccurate due to weak supervision
on part location. Thus, in our extra study, if the semantic
labels including these complex concepts with some wrong
part names are provided, users’ satisfaction of SPANet will
decrease by about 0.1. Nevertheless, all participants believe
that semantic labels are beneficial, and more accurate se-
mantic attachment will further enhance the interpretability.
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input image
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black nape
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recognition result w/ explanations

The bird may be a Parakeet
Auklet with a probability of
0.9999, because its nape is
black, breast and belly is white,
and bill is shorter than its head.
These patterns often appear in
a typical Parakeet Auklet.

white belly
contrib: 3.254

=

bill shorter than head
contrib: 3.212

Figure 5. Example of the recognition process of SPANet. The distances between local features of input image and learned semantic
prototypes are calculated, and the (local feature, semantic prototype) pair contributes positively to the category that the protoype belongs
to and negatively to the other categories. The recognition result with explanations in natural language is provided as a result.
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concept'107 conce;i(llo -
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Figure 6. Visualization of the semantic prototypes from the trained
SPANet. Correctly predicted concepts and the corresponding lo-
cations are indicated in green, while incorrect ones are in red.

4.5. Ablation study

The results of ablation study on CUB are listed in Table
3. The module of prototype-based recognition and its losses
have been thoroughly validated in previous works. There-
fore, we focus on the validation of the proposed module of
semantic fine-tuning and attachment.

As shown in Table 3 and mentioned in Sec.3.3, the per-
fromance on the fine-grained datasets (such as CUB) of us-
ing the pretrained vision-language model directly, which is
pretrained on large amounts of image and text data in var-
ious generic scenarios, is not satisfactory (see “SPANet w/
frozen backbone”). SPANet can also be implemented with-
out any semantic interpretability, which is similar to Pro-
toPNet [3]’s structure, and the results are also very simi-
lar to ProtoPNet [3] with the same backbone. Additionally,
global fine-tuning and local fine-tuning not only enable the

model with semantic interpretability, but also improve the
recognition accuracy to some extent by introducing cross-
modal knowledge from language. However, relying solely
on image-text pairs is difficult to obtain the ability of local
semantic alignment, while relying solely on image-concepts
pairs makes the corpus scope extremely limited (limited to
some attribute vocabulary). Combining the both can in-
tegrate their advantages comprehensively. Therefore, the
complete SPANet can better integrate knowledge from nat-
ural language and achieve optimal recognition performance.

5. Conclusion

In this paper, we focus on interpretable object recogni-
tion and propose SPANet to generate both part-wise expla-
nations and semantic labels through the learned semantic
prototypes. Consequently, SPANet can provide intelligible
and comprehensible explanations for its decision process,
and its effectiveness has been demonstrated in empirical ex-
periments. However, some limitations still exist and more
improvements could be considered in the future work: en-
hancing the effectiveness of semantic attachment can fur-
ther improve interpretability, and the opacity of the com-
plicated backbone also requires more attention. Neverthe-
less, the user study shows that the explanations in the form
of semantic prototypes are promising and worth further de-
velopment. We call for more attention to the user-friendly
explanations to help human make precise decision in the
scenarios with high-reliability requirements.
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